Ada Boost Classifier
Ada Boost Classifier technique is tested here to see their accuracy in terms of output.
Python program:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from matplotlib.colors import ListedColormap
>>> from sklearn import ensemble, datasets
>>> iris = datasets.load_iris()
>>> x = iris.data[:, :2]
>>> y = iris.target
>>> h = .02
>>> cmap_bold = ListedColormap(['firebrick', 'lawngreen', 'b'])
>>> cmap_light = ListedColormap(['pink', 'palegreen', 'lightcyan'])
//Plotting the analysis//
a) Effect of Number of estimators (n_estimators):
>>> for n_estimators in [1, 12, 250, 1250, 7200]:
... clf = ensemble.AdaBoostClassifier(n_estimators=n_estimators)
... clf.fit(x, y)
... x_min, x_max = x[:, 0].min() -1, x[:, 0].max() +1
... y_min, y_max = x[:, 1].min() -1, x[:, 1].max() +1
... xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
... z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... z = z.reshape(xx.shape)
... plt.figure()
... plt.pcolormesh(xx, yy, z, cmap=cmap_light)
... plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=24)
... plt.xlim(xx.min(), xx.max())
... plt.ylim(yy.min(), yy.max())
... plt.title("AdaBoostClassifier (n_estimators='%s')" %(n_estimators))
...
Increased in number of estimators increases output (analysis) accuracy.
b) Effect of random state (random_state):
>>> for random_state in [1, 12, 75, 250, 1250, 7200]:
... clf = ensemble.AdaBoostClassifier(random_state=random_state)
... clf.fit(x, y)
... x_min, x_max = x[:, 0].min() -1, x[:, 0].max() +1
... y_min, y_max = x[:, 1].min() -1, x[:, 1].max() +1
... xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
... z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... z = z.reshape(xx.shape)
... plt.figure()
... plt.pcolormesh(xx, yy, z, cmap=cmap_light)
... plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=24)
... plt.xlim(xx.min(), xx.max())
... plt.ylim(yy.min(), yy.max())
... plt.title("AdaBoostClassifier (random_state='%s')" %(random_state))
...
c) Effect of learning rate (learning_rate):
>>> for learning_rate in [1, 2, 5, 15]:
... clf = ensemble.AdaBoostClassifier(learning_rate=learning_rate, algorithm=algorithm)
... clf.fit(x, y)
... x_min, x_max = x[:, 0].min() -1, x[:, 0].max() +1
... y_min, y_max = x[:, 1].min() -1, x[:, 1].max() +1
... xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
... z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... z = z.reshape(xx.shape)
... plt.figure()
... plt.pcolormesh(xx, yy, z, cmap=cmap_light)
... plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=24)
... plt.xlim(xx.min(), xx.max())
... plt.ylim(yy.min(), yy.max())
... plt.title("AdaBoostClassifier (learning_rate='%s', algorithm='%s')" %(learning_rate, algorithm))
...
Ada Boost Classifier technique is tested here to see their accuracy in terms of output.
Python program:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from matplotlib.colors import ListedColormap
>>> from sklearn import ensemble, datasets
>>> iris = datasets.load_iris()
>>> x = iris.data[:, :2]
>>> y = iris.target
>>> h = .02
>>> cmap_bold = ListedColormap(['firebrick', 'lawngreen', 'b'])
>>> cmap_light = ListedColormap(['pink', 'palegreen', 'lightcyan'])
//Plotting the analysis//
a) Effect of Number of estimators (n_estimators):
>>> for n_estimators in [1, 12, 250, 1250, 7200]:
... clf = ensemble.AdaBoostClassifier(n_estimators=n_estimators)
... clf.fit(x, y)
... x_min, x_max = x[:, 0].min() -1, x[:, 0].max() +1
... y_min, y_max = x[:, 1].min() -1, x[:, 1].max() +1
... xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
... z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... z = z.reshape(xx.shape)
... plt.figure()
... plt.pcolormesh(xx, yy, z, cmap=cmap_light)
... plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=24)
... plt.xlim(xx.min(), xx.max())
... plt.ylim(yy.min(), yy.max())
... plt.title("AdaBoostClassifier (n_estimators='%s')" %(n_estimators))
...
Increased in number of estimators increases output (analysis) accuracy.
b) Effect of random state (random_state):
>>> for random_state in [1, 12, 75, 250, 1250, 7200]:
... clf = ensemble.AdaBoostClassifier(random_state=random_state)
... clf.fit(x, y)
... x_min, x_max = x[:, 0].min() -1, x[:, 0].max() +1
... y_min, y_max = x[:, 1].min() -1, x[:, 1].max() +1
... xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
... z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... z = z.reshape(xx.shape)
... plt.figure()
... plt.pcolormesh(xx, yy, z, cmap=cmap_light)
... plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=24)
... plt.xlim(xx.min(), xx.max())
... plt.ylim(yy.min(), yy.max())
... plt.title("AdaBoostClassifier (random_state='%s')" %(random_state))
...
c) Effect of learning rate (learning_rate):
>>> for learning_rate in [1, 2, 5, 15]:
... clf = ensemble.AdaBoostClassifier(learning_rate=learning_rate, algorithm=algorithm)
... clf.fit(x, y)
... x_min, x_max = x[:, 0].min() -1, x[:, 0].max() +1
... y_min, y_max = x[:, 1].min() -1, x[:, 1].max() +1
... xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
... z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
... z = z.reshape(xx.shape)
... plt.figure()
... plt.pcolormesh(xx, yy, z, cmap=cmap_light)
... plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=24)
... plt.xlim(xx.min(), xx.max())
... plt.ylim(yy.min(), yy.max())
... plt.title("AdaBoostClassifier (learning_rate='%s', algorithm='%s')" %(learning_rate, algorithm))
...
No comments:
Post a Comment